The Counterfeit Self: The Deceptive Costs of Faking It

Francesca Gino*

Michael I. Norton**

Dan Ariely***

* University of North Carolina in Chapel Hill, ** Harvard Business School, *** Duke University

Forthcoming at *Psychological Science*

The authors thank the Center for Decision Research at the University of North Carolina in Chapel Hill for its support, and Harper’s Bazaar and Chloe for the products we used in these experiments.
Abstract

Though people buy counterfeit products to signal positive traits, we show that wearing counterfeit products makes individuals feel less authentic and increases their likelihood of both behaving dishonestly and judging others as unethical. In four experiments, participants wore purportedly “fake” or “branded” sunglasses. Those wearing “fake” sunglasses cheated more across multiple tasks than did participants wearing “branded” sunglasses, when they believed they had a preference for counterfeits (Experiment 1A) and when they were randomly assigned to wear them (Experiment 1B). Experiment 2 shows that wearing counterfeit sunglasses extends beyond the self, influencing judgments of others’ unethical behavior. Experiment 3 demonstrates that the feelings of inauthenticity that wearing fake products engenders – what we term the “counterfeit self” – mediate the impact of counterfeits on unethical behavior. Finally, we show that people do not predict the impact of counterfeits on ethicality, suggesting that the costs of counterfeits are deceptive.

Keywords: Authenticity; Counterfeits; Dishonesty; Fake; Self-Interested Behavior
The Counterfeit Self: The Deceptive Costs of Faking It

As with their other consumption decisions – the products people buy to adorn themselves or decorate their homes and offices (Belk, 1988; Gosling, Ko, Mannarelli, & Morris, 2002) – people buy counterfeit products to signal positive traits, to themselves and others (Bodner & Prelec, 2002; Wilcox, Kim, & Sen, 2009). Counterfeits, however, have an additional property, in that they signal an aspiration to be something one is not – for example, to feel wealthier than one’s income allows. We contend that counterfeit products do cause people to be something they are not, but in ways they do not expect: Counterfeit products cause people to be not admirable but unethical, generating in them a feeling of a “counterfeit self” that leads them to behave unethically.

As with other research exploring signaling conflicts, such as between public and private signals (Goffman, 1956; Kuran, 1995), counterfeits serve as an interesting case in which desired signals (I am an admirable person) may conflict with actual signals (I am a fake). We suggest that counterfeit products create a particular kind of conflict: Though the wearer intends them to signal positive traits, wearing counterfeits can in fact send a negative signal to the self. Indeed, given the well-documented effects of primes on behavior, such that the mere presence of objects can influence behavior (Berger & Fitzsimons, 2008; Berkowitz & LePage, 1967), we suggest that the negative impact of wearing counterfeit products is likely to occur despite their owners’ desire to use them for positive signaling.

If wearing counterfeits can influence the signals one sends to oneself, what are the likely consequences? We hypothesize a link between wearing counterfeits, feeling “fake” or inauthentic, and behaving unethically: We suggest that a product’s lack of authenticity may cause their owners to feel less authentic themselves – despite their belief that the product will
actually have positive benefits – and that these feelings then cause them to behave dishonestly and to view others’ behavior as more dishonest as well. In short, we suspect that feeling like a fraud makes people more likely to commit fraud.

We tested these predictions in four experiments. We first show that wearing purportedly counterfeit sunglasses causes people to cheat more on tests when given the opportunity – both when they believe they have an inherent preference for counterfeit products (Experiment 1A) and when they were randomly assigned to wear counterfeits (Experiment 1B). Indeed, the impact of counterfeits extends even beyond the individual, causing individuals not just to behave unethically but also to see the behavior of others as more unethical as well (Experiment 2). Finally, we investigate the mechanism underlying these effects, showing that wearing counterfeits causes people to feel inauthentic, and these feelings of inauthenticity – their counterfeit self – drive unethical behavior (Experiment 3).

Experiment 1A: Effects of Preferring Counterfeits

Our first experiment examined whether wearing purportedly counterfeit sunglasses led to higher levels of dishonest behavior as compared to wearing brand-name sunglasses – though in fact all sunglasses were brand-name. In Experiment 1A, we assessed the impact of counterfeits when people believe that they have an inherent preference for counterfeits; in Experiment 1B, in contrast, we explored whether these effects can emerge even when people do not feel responsible for choosing counterfeits, but are merely induced to wear counterfeits.

Method

Eighty-five female students ($M_{age}=21; \ SD=2.21$) participated in the study. They received $1 as a show-up fee and could earn up to an additional $24 throughout the study.
After participants entered the lab, the experimenter randomly distributed a study ID to them. The experimenter told participants they would evaluate the quality of different pairs of sunglasses as part of a marketing study. To determine which pair of sunglasses participants would wear, we used an initial computer task with the following instructions:

Your first task in this study is to express your preference for various product categories. You will be asked to choose between two options of different products. You will be shown pictures of each product. Some of the products you will see are authentic products of various brands, while others are counterfeit products (e.g., replica products of well-known brands). Price information will be provided for some of the choices. Please make your choices based on your preferences. There is no right or wrong answer.

Participants indicated their choices for 12 different pairs of products, across various product categories (e.g., technology, clothing, jewelry). Independent of their choices, the computer randomly assigned participants to one of our two experimental conditions, namely authentic or counterfeit sunglasses conditions. After indicating their choice for each pair of products, participants in the counterfeit [authentic] sunglasses condition received the following instructions:

Based on your answers, and relative to other people in our study, it seems that you have a relative preference for counterfeit [authentic] products. Please go to the adjacent room and take a pair of sunglasses from the box labeled “Counterfeit Sunglasses.” [Authentic Sunglasses by Chloe]

Unbeknownst to participants, both boxes contained ten different pairs of sunglasses by the same designer, Chloe, each costing about $300 (see Figure 1 for an example) and the actual content of the two boxes was randomized across sessions. Participants then wore the sunglasses as they completed five tasks.

Task 1: Walking around. First, participants walked around the hall outside the lab room and in an adjacent room for five minutes, purportedly evaluating different posters that were hanging on the wall while getting used to the sunglasses.
Task 2: Pen and pencil matrix task. Next, back in the lab room, participants completed a problem-solving task while wearing their sunglasses. Each participant received two sheets of paper: the first was a worksheet with 20 matrices, each based on a set of 12 three-digit numbers (e.g., 5.78, see Mazar, Amir, & Ariely, 2008). The second sheet was a collection slip on which participants were supposed to report their performance and answer questions about their gender and age. In this task, participants had five minutes to find two numbers per matrix that added up to 10; the time duration was not sufficient for anyone to solve all 20 matrices. For each pair of numbers correctly identified, participants received $0.50 (for a maximum payment of $10). After the five minutes had passed, participants folded their worksheet and placed it in a recycling box positioned in a corner of the room and then they wrote down their performance on their collection slip. There was no identifier on the worksheet, so that participants could feel anonymous as they reported their performance on the task. However, we changed the last two digits in one of the matrix on the worksheet and in the example provided on the back of the collection slip so that we could compare actual to reported performance.

Task 3: Perceptual task on computer. While still wearing their sunglasses, participants engaged in a perceptual task. In this task, participants were presented with a square divided into two by a diagonal line (see Figure 2 for an example). On each trial, the square included 20 dots, some on the right and some on the left side of the diagonal. After a 1 second exposure, participants had to identify which side of the diagonal (right or left) contained more dots by clicking either on a button labeled “more on left” or on a button labeled “more on right.” Importantly, the payout in each trial was determined by the following rule: For each click on the “more on left” button, participants would earn 0.5 cents; for each click on the “more on right” button, they would earn 5 cents. As such, in every trial that included more dots on the left side of
the diagonal the task presented a conflict between giving an accurate answer (left) and maximizing profit (right).

The perceptual task was divided into two phases. In the first phase, participants performed 100 practice trials. In each of these practice trials, participants received feedback about their earnings on that trial and their cumulative earnings as it would be if these trials were for real payment. In the second phase, participants performed 200 trials in which they earned real money. As before, they received information about their trial by trial and about their cumulative earnings. Participants could earn a maximum of $10 on this perceptual task (by always pressing the “more on the right” button). Each set of 100 trials consisted of two blocks of 50 trials, and each block included screens with the following ratios of dots in the left and right triangles: 8 trials where the answer was clearly “right,” 17 trials where the answer was clearly “left,” and 25 ambiguous trials. Once participants completed this task, they reported their performance in phase 2 as indicated on the computer on a collection slip to be handed to the experimenter at the end of the study.

Task 4: Sunglasses evaluation. As their fourth task, participants took their sunglasses off and evaluated them by writing a short report describing their features. In addition, they indicated the extent to which they agreed with various statements about the sunglasses (see Table 1). Across the four experiments, there were no significant differences between conditions on any of these measures, and thus we do not discuss any of them in the rest of the paper. Finally, as a manipulation check, respondents estimated the retail price of the sunglasses. In each of the four experiments, participants in the authentic sunglasses condition estimated that the sunglasses were sold at a higher price than did participants in the counterfeit sunglasses condition (see Table 2). These results suggest that our manipulation was effective, although the differences in these
responses did not drive our effects: We conducted additional analyses to test whether estimated selling price predicted dishonesty and did not find any significant effect in any of the tasks used across studies. Participants were paid $2 for this task. After completing their evaluations, participants returned their sunglasses and filled out a final questionnaire.

Task 5: Fashion survey. The final questionnaire measured participants’ interest in fashion and their brand awareness and recognition. Across the four experiments, there were no significant differences between conditions on any of these measures, and thus we do not discuss any of them in the rest of the paper. Participants received $2 for this final task.

Results and Discussion

Level of Cheating on the Matrix Task

In the counterfeit sunglasses condition, 71% of participants (30 out of 42) inflated their performance, while “only” 30% (13 out of 43) cheated in the authentic sunglasses condition, $\chi^2(1,N=85)=14.43, p_{rep}>.99$. As shown in Figure 3, there were no significant differences in real performance on this task ($p_{rep}=.20$), but self-reported performance was higher in the counterfeit sunglasses condition than in the authentic sunglasses condition ($t[83]=4.72, p_{rep}>.99$), suggesting that participants behaved more dishonestly when wearing counterfeit sunglasses.

Level of Cheating on the Perceptual Task

For phase 2, when participants earned money for their choices, we first examined the number of times they chose “right” when in fact there were clearly more dots in the right side. A repeated-measure ANOVA (repeated-measures on four blocks of 50 trials) with experimental condition as a between-subjects factor revealed no significant effects (all $p_{rep}<.66$).

Next, we examined participants’ choices for “right” in ambiguous trials. Both groups showed a moderate increase in dishonest behavior across blocks ($F[3.249]=54.05, p_{rep}>.99$), but
participants chose “right” more frequently in ambiguous trials when they were wearing “fake” sunglasses than when they were wearing “real” sunglasses (\(M=12.78\) vs. 10.53; \(F[1,83]=18.77, p_{rep}>.99\)). The interaction between blocks and conditions was also significant (\(F[3,249]=22.73, p_{rep}=.99\)), indicating that the increase in dishonest behavior across blocks was steeper in the counterfeit sunglasses condition compared to the authentic sunglasses condition.

Finally, we examined the number of times participants chose right when in fact there were clearly more dots in the left triangle. Again, the increase in dishonesty over time was significant (\(F[3,249]=10.06, p_{rep}>.99\)). Furthermore, participants chose “right” more frequently in this type of trials when they were wearing “fake” sunglasses than when they were wearing “real” sunglasses (\(M=11.52\) vs. 9.59; \(F[1,83]=7.38, p_{rep}=.95\)), but the interaction between blocks and conditions was not significant (\(p_{rep}=.54\)). Overall, these results indicate that wearing seemingly counterfeit sunglasses increases dishonesty.

Experiment 1B: Effects of Merely Wearing Counterfeits

Having shown the impact of counterfeits when people feel that such products reflect their personal preferences, we next tested whether the impact of counterfeits might emerge even with a more tenuous link between the product and the self – as with, for example, someone who receives a counterfeit product as a gift from a friend. In Experiment 1B, we transparently randomly assigned people to wear either genuine or fake products, to test whether the mere act of using counterfeits is sufficient to induce unethical behavior.

Ninety-one female students (\(M_{age}=22; SD=3.27\)) participated in the study. The study employed the same procedures as in Experiment 1A, but we eliminated the initial task asking participants to express their preference for various product categories. In Experiment 1B, the study ID participants received at the beginning of the study consisted of a number followed by
either the letter F (indicating that participants had been randomly assigned to the counterfeit, or “fake,” sunglasses condition) or the letter C (indicating that participants had been randomly assigned to the brand-name, or “Chloe,” sunglasses condition). There were two boxes in the room, one clearly labeled “sunglasses by Chloe” and one clearly labeled “fake sunglasses.” After giving some initial instructions, the experimenter asked each participant to go to the box corresponding to the letter reported on their study ID (“Chloe” or “fake”) and pick up a pair of sunglasses.

As summarized in Table 3, our results were strikingly similar to those from Experiment 1A: Dishonesty was higher for participants wearing seemingly counterfeit sunglasses than for those wearing authentic sunglasses, on both tasks. These results reinforce the findings of Experiment 1A, and suggest that the choice of a counterfeit product is not necessary for increased unethical behavior to emerge. We note that Experiment 1B used a procedure that attenuated but did not eliminate the role of choice: Even those who receive a counterfeit gift must choose to wear that gift. The fact that the results of Experiment 1B were so similar to those of Experiment 1A, however, suggests that choice is not likely to be the driving force in producing the observed effects.

Experiment 2: Counterfeits and the Behavior of Others

Our first two studies provided robust evidence that wearing counterfeits influences behavior, whether the wearer personally preferred counterfeits or was randomly assigned to do so. In Experiment 2, we further test how far-reaching the impact of counterfeits may be by exploring whether it extends beyond the individual. Experiment 2 tests the hypothesis that wearing counterfeits also affects how we interpret the behavior of others: If wearing counterfeits
make people feel less authentic and behave less ethically, they may interpret others’ behavior as less authentic and ethical as well.

Method

Seventy-nine female students ($M_{age} = 21; SD=2.40$) participated in the study for $7. The study employed the same manipulation as in Experiment 1B, but after students had walked around wearing sunglasses for five minutes, we asked them – with the sunglasses still on – to fill out a survey asking for their judgments on a variety of matters. The survey included some filler questions together with three sets of questions related to how participants interpret and judge the behavior of others. We randomized the order in which the sets of questions were presented in the survey. In the first set, we asked participants to think of people they knew and to state how likely these people would be to engage in each of eight ethically questionable behaviors on a 9-point scale (1=Not likely, 9=Very likely), including “Inflate their business expense report,” “Lie to an insurance company about the value of goods that were damaged,” and “Buy a garment, wear it and return it” ($\alpha=.87$). In the second set, we asked participants to read six sentences and rate the likelihood that when these are uttered they were lies (1=Probably a lie, 9=Probably true), including “Sure, I’ll start working on that tonight,” “Yes, John was with me last night,” and “I thought I already sent that email out. I am sure I did” ($\alpha=.81$). Finally, in the third set participants read two scenarios describing a person who has the opportunity to behave dishonestly (see Appendix) and evaluated the likelihood that the actor would indeed do so on a 9-point scale (1=Not likely, 9=Very likely).

After answering this general survey, participants evaluated the sunglasses they wore by writing a short report and completed the manipulation check.

Results and Discussion
When thinking of the behavior of people they knew, participants in the counterfeit sunglasses condition reported these people to be more likely to behave dishonestly than did participants in the authentic sunglasses condition (5.32 vs. 4.32), \(t(77)=2.90, p_{rep}=.97 \). They also interpreted common excuses as less likely to be truthful as compared to participants wearing authentic sunglasses (3.96 vs. 4.65), \(t(77)=2.03, p_{rep}>.88 \). Finally, participants wearing counterfeit sunglasses judged the actors in the two scenarios as more likely to behave dishonestly than did participants wearing authentic sunglasses (7.52 vs. 6.34), \(F(1,77)=7.66, p_{rep}>.95 \).

In short, compared to participants who believed they wore authentic sunglasses, participants who believed they wore fake sunglasses interpreted others’ behavior as more dishonest, considered common behaviors to be less truthful, and believed that others would be more likely to behave unethically.

Experiment 3: Authenticity, the Counterfeit Self, and Dishonesty

The three experiments presented thus far showed that wearing seemingly counterfeit sunglasses increases actual dishonesty and perceptions of others’ dishonesty. Experiment 3 examines the psychological mechanism behind this effect by including measures for our proposed mediator, feelings of authenticity. In addition, the study includes a control condition to determine whether wearing counterfeits motivates dishonest behavior or whether wearing brand-name sunglasses reduces it. We predicted that wearing counterfeits would lead to an increase in unethical behavior, and that this unethical behavior would be driven by people’s feelings of inauthenticity – their counterfeit self.

Method

One hundred female students (\(M_{age}=21; SD=2.55 \)) participated in the study. The study employed the same procedure as Experiment 1B, but with three important differences. First, we
introduced a control condition in which participants were not given any information about the sunglasses. Second, we added a measure of authenticity, using a personality questionnaire (which also included some bogus questions) using a four-item scale, adapted from Wood, Linley, Maltby, Biousis, and Joseph (2008), that measures authenticity as self-alienation ($\alpha=.71$).

Participants indicated their agreement with the following items using a 7-point scale (1=Not at all, 7=Very much): 1) “Right now, I don’t know how I really feel inside”; 2) “Right now, I feel as if I don’t know myself very well”; 3) “Right now, I feel out of touch with the ‘real me’”; and 4) “Right now, I feel alienated from myself.” Higher scores on this scale indicate higher levels of self-alienation and thus lower levels of perceived authenticity. Third, because results for the two cheating tasks were similar in Experiments 1A and 1B, in Experiment 3 we did not include the perceptual task.

Results and Discussion

Level of Cheating on the Matrix Task

The percentage of participants who inflated their performance varied across conditions, $\chi^2(2,N=100)=13.37, p_{rep}>.99$. Seventy-four percent (25 out of 34) inflated their performance in the counterfeit sunglasses condition, 42% (14 out of 33) inflated it in the control condition, and “only” 30% (10 out of 33) did so in the authentic sunglasses condition. On average, and as depicted in Figure 4, real performance on the task did not differ across conditions ($p_{rep}=.07$) but self-reported performance did ($F[2,97]=4.76, p_{rep}>.93$); self-reported performance was higher in the counterfeit sunglasses condition than in both the control ($p_{rep}>.93$) and authentic sunglasses conditions ($p_{rep}>.95$). Self-reported performance was about the same in the control and the authentic sunglasses conditions ($p_{rep}=.33$), suggesting that the effect was driven by counterfeits.
Overall, these results provide further support for the findings of Experiments 1A and 1B. In addition, as we predicted, counterfeits led to an increase in unethicality: Participants in the counterfeit sunglasses condition behaved more dishonestly than participants in both the authentic sunglasses condition and the control condition.

Feelings of Authenticity

Participants’ ratings for authenticity varied across conditions, $F(2,97)=7.89, p_{rep}=.99$. Participants felt less authentic (i.e., more self-alienated) in the counterfeit sunglasses condition ($M=4.46, SD=1.05$) than in both the authentic sunglasses condition ($M=3.65, SD=0.85, p_{rep}>.99$) and the control condition ($M=3.73, SD=0.82, p_{rep}>.95$). Feelings of authenticity did not differ between the authentic sunglasses and the control conditions ($p_{rep}=.35$).

To examine whether feeling of authenticity mediated the effect of wearing counterfeits on dishonest behavior in the matrix task, we followed procedures recommended by Baron and Kenny (1986). As expected, the effect of our manipulation of wearing fake sunglasses on dishonest behavior was reduced to marginal significance (from $\beta=.29, p_{rep}=.99$ to $\beta=.12, p_{rep}=.84$) when self-alienation was included in the equation, and self-alienation was a significant predictor of dishonesty ($\beta=.47, p_{rep}>.99$). Including self-alienation increased the variance explained significantly by 18% from $r^2=.52$ to $r^2=.70$ ($F[1,95]=59.52, p_{rep}>.99$); the Sobel test was significant, $Z=2.96, p_{rep}>.97$, indicating mediation. In short, these results demonstrate that wearing counterfeits causes people to feel inauthentic, and these feelings of inauthenticity drive their unethical behavior.

These results address an alternative explanation for our results – that counterfeit products directly prime unethical behavior (Dijksterhuis & Bargh, 2001). We demonstrate, however, that
the impact of products on behavior is mediated by their impact on the self, in contrast to a direct prime-to-behavior account (see Wheeler, DeMaree, & Petty, 2007).

General Discussion

We suggested at the outset that people adopt counterfeit products because they are trying to improve their self-image; our studies show that counterfeits have the ironic consequence of harming self-image via inauthenticity, inducing a “counterfeit self.” Why then do people buy counterfeit products? One view, of course, is that the benefits of counterfeits simply outweigh these costs, and that people are making a calculated tradeoff between the two. We suspected that people may not be making this tradeoff, however, but rather may simply overlook the possible negative consequences of adopting counterfeits. Indeed, when we asked a separate set of students \(N=86; M_{age}=22, SD=2.20 \) to predict the impact of counterfeits, they were unaware of the consequences for ethical behavior. We gave these students the average performance on the matrix task of our study participants, and asked them to predict the self-reported performance in three experimental conditions: Counterfeit sunglasses, authentic sunglasses, and a control condition. The students correctly predicted that, overall, participants across conditions would cheat \(M_{real}=9.62, M_{fake}=9.59, M_{control}=9.34; F[3,255]=43.67, p_{rep}>.99 \). However, they did not anticipate that cheating would vary across the three described conditions \(F[2,170]<1, p_{rep}=.56; p_{rep}<.72 \) across all comparisons). This difference between people’s predictions about the impact of counterfeits and their actual behavior in our experiments suggests that the influence of wearing counterfeits is deceptive, in that they have an unexpected influence on individuals’ ethicality.

The obvious differences between laboratory settings and real-world contexts aside, our results have worrisome implications for the many consumers who buy counterfeit goods. Given
the economic and social relevance of the counterfeiting epidemic, future research on the psychology of counterfeits and their potential moral costs seems warranted. Indeed, given that cost savings is a primary motivation for the purchase of counterfeits (Eisend & Schuchert-Guler, 2006), individuals who buy counterfeits for themselves or gift them to others may believe that they are simply getting similar products for less money, but in fact may be paying a price in terms of their long-term morality. Perhaps most troublingly, our results from Experiment 2 demonstrate that the negative impact of counterfeits accrue not just to the buyer, but extend more broadly to the social environment, suggesting that overlooking the negative impact of counterfeits may have far-reaching negative consequences.
Appendix

Questions and Scenarios used in Experiment 2

Questions

A. Please think of people you know and state how likely they are to engage in the following behaviors.

Be in the express line with too many groceries.
Board a plane before their group number is called.
Inflate their business expense report.
Tell their supervisor that progress has been made on a project, when none has been made at all.
Take home office supplies from work.
Lie to an insurance company about the value of goods that were damaged.
Buy a garment, wear it and return it.
Lie to their partner about the number of sex partners they had in the past.

B. Please read the following sentences and evaluate the likelihood that each of them is a lie.

Sorry I'm late, traffic was terrible.
My GPA is 4.0.
It was good meeting you. Let’s have lunch sometime.
Sure, I'll start working on that tonight.
Yes, John was with me last night.
I thought I already sent that email out. I am sure I did.

Scenarios

1. Steve is the Operations manager of a firm that produces pesticides and fertilizers for lawns and gardens. A certain toxic chemical is going to be banned in a year, and for this reason is extremely cheap now. If Steve buys this chemical, produces and distributes his product fast enough, he will be able to make a very nice profit. Please evaluate the likelihood that Steve will use this chemical while it is still legal.

2. Dale is the Operations manager of a firm that produces health food. Their organic fruit beverage has 109 calories per serving. Dale knows people are sensitive to crossing the critical threshold of one hundred calories. He could decrease the serving size by 10%. The label will say each serving has 98 calories, and the fine print will say each bottle contains 2.2 servings. Please evaluate the likelihood that Dale will cut the serving size to avoid crossing the 100 threshold.
References

Table 1

Questions used in the product evaluation survey. Participants indicated their agreement with these items on a 7-point scale (ranging from 1=Strongly Disagree, to 7=Strongly Agree)

1. These sunglasses are clearly of high quality.
2. These sunglasses are very comfortable.
3. These sunglasses are very fashionable.
4. I like these sunglasses a lot.
5. These sunglasses are very well manufactured.

Table 2

Estimated selling price used as manipulation checks by condition, Experiments 1-3. Standard deviations are reported in parentheses

<table>
<thead>
<tr>
<th></th>
<th>Authentic sunglasses</th>
<th>Counterfeit sunglasses</th>
<th>Control sunglasses</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1A</td>
<td>$201</td>
<td>$57</td>
<td></td>
<td>$t(83)=7.88, p_{rep}>.99$</td>
</tr>
<tr>
<td></td>
<td>($104)</td>
<td>($58)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment 1B</td>
<td>$137</td>
<td>$67</td>
<td></td>
<td>$t(81)=3.34, p_{rep}=.99^1$</td>
</tr>
<tr>
<td></td>
<td>($102)</td>
<td>($87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment 2</td>
<td>$116</td>
<td>$34</td>
<td></td>
<td>$t(77)=5.92, p_{rep}>.99$</td>
</tr>
<tr>
<td></td>
<td>($75)</td>
<td>($21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment 3</td>
<td>$148</td>
<td>$31</td>
<td>$82</td>
<td>$F(2,93)=18.63, p_{rep}>.99^2$</td>
</tr>
<tr>
<td></td>
<td>($116)</td>
<td>($21)</td>
<td>($68)</td>
<td></td>
</tr>
</tbody>
</table>

^1 Note that the number of degrees of freedom is equal to only 81 since a few participants did not answer the questionnaire including our manipulation checks reported on the back of their evaluation form.

^2 Post-hoc tests revealed that the estimated price was higher in the real sunglasses condition than in both the fake sunglasses condition ($p_{rep}>.99$) and the control condition ($p_{rep}>.95$). Furthermore, the estimated price was significant lower in the fake sunglasses than in the control condition ($p_{rep}>.89$).
Table 3

Summary of results, Experiment 1B

<table>
<thead>
<tr>
<th>Matrix Task</th>
<th>Subjects inflating their performance</th>
<th>Authentic sunglasses</th>
<th>Counterfeit sunglasses</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real performance</td>
<td>26% (12 out of 46)</td>
<td>69% (31 out of 45)</td>
<td>$\chi^2(1,N=91)=16.72, p_{rep}>.99$</td>
<td></td>
</tr>
<tr>
<td>Self-reported performance</td>
<td>6.52 (SE = 0.58)</td>
<td>7.04 (SE = 0.51)</td>
<td>$t(89)<1, p_{rep}=.50$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.30 (SE = 0.58)</td>
<td>9.73 (SE = 0.61)</td>
<td>$t(89)=2.91, p_{rep}>.95$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perceptual Task</th>
<th>Effect of four blocks of 50 trials</th>
<th>Effect for condition</th>
<th>Interaction effect between blocks and condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Clear right” trials</td>
<td>$F(3,267)=1.27, p_{rep}=.65$</td>
<td>$F(1,89)<1, p_{rep}=.26$</td>
<td>$F(3,267)<1, p_{rep}=.39$</td>
</tr>
<tr>
<td>Ambiguous trials</td>
<td>$F(3,267)=5.89, p_{rep}=.99$</td>
<td>$F(1,89)=10.21, p_{rep}>.95$</td>
<td>$F(3,267)<1, p_{rep}=.26$</td>
</tr>
<tr>
<td>“Clear left” trials</td>
<td>$F(3,267)=2.17, p_{rep}=.83$</td>
<td>$F(1,89)=8.74, p_{rep}>.95$</td>
<td>$F(3,267)=1.02, p_{rep}=.58$</td>
</tr>
</tbody>
</table>
Figures Captions

Figure 1. Example of sunglasses used in Experiments 1-3.

Figure 2. Example of perceptual task, Experiments 1A, 1B, 3.

Figure 3. True and self-reported performance by condition, Experiment 1A.

Figure 4. True and self-reported performance by condition, Experiment 3.
Figure 1.

Note: Measures for exposure values suggest that participants could clearly see while wearing sunglasses during the study. Light values were measured using a standard photographic light meter set for ISO 400 speed film. The exposure value of the room where the study took place was 10.5 when fully lit. When wearing the different pairs of sunglasses, the exposure value was 8.26 on average ($SD = 0.54$, range: 7.2-9.0).

Figure 2.

Note: In Phases 2 and 3 of the perceptual task, each set of 100 trials consisted of two blocks of 50 trials. Each block included screens with the following ratios of dots in the left and right triangles: 8 trials of clear right, 17 trials of clear left, and 25 ambiguous trials. We computed these ratios and classified the trials into one of three categories: 1) clear right, indicating that the square clearly had a larger number of dots in the right triangle (i.e., the ratio of the number of dots in the right triangle over the number of dots in the left triangle is greater than or equal to 1.5); 2) clear left, indicating that the square clearly had a larger number of dots in the left triangle (i.e., a ratio lower than or equal to $2/3 (= 1/1.5)$); and 3) ambiguous trial, indicating that there were an equal number of dots in the left and right triangles or any ratio between $2/3$ and 1.5.
Given the robust evidence provided by prior research showing that women care more about brand-name fashion products, commonly express a higher level of interest in fashion (Auty & Elliott, 1998), and consider themselves as more fashion innovative (Goldsmith, Moore, & Beaudoin, 1999), our study participants were all female.

In these analyses, we used self-reported performance in the matrix task as the dependent variable and controlled for participants’ real performance. We used dummy variables for our manipulation and included one dummy variable for the counterfeit sunglasses condition and another one for the authentic sunglasses condition. We conducted similar analyses using a dichotomous variable for cheating (indicating whether each participant cheated on the task or not) as the dependent variable. The nature and significance of the results did not change.